
T-110.5150
Applications and Services in Internet

Scaling web applications
Denis Shestakov, fname.lname@aalto.fi

November 8, 2011

Outline

● What is scalability?
● Scaling strategies
● Scaling network
● Load balancing
● Scaling database
● Monitoring and alerting
● Caching
● Example: eBay architecture (1995-2006)
● CAP (Brewer's) Theorem <- learn more about it!

● Cloud computing

What is scalability?

● A service is called scalable if, adding more
resources in a system results in increased
performance in a manner proportional to
resources added

○ Increased performance? Typically, serving more
units of work or handling larger units of work (due
to data growth)

● If resources added to improve redundancy of a
system: a service is scalable, if adding resources
does not result in a loss of performance

What is scalability?

● A scalable system has three characteristics:
○ It can accommodate an increased usage
○ It can accommodate an increased dataset
○ It is maintainable

● Scalability is not:
○ Performance: high-performing system may not scale

- e.g., it may be fast for 1,000 users and 1 GB data
but not that fast with 10 times as many users and 10
times data

○ About using any particular technology:
Implementation language has little bearing on the
scalability of a system

○ Separation of page logic from business logic

What is scalability?
○ A scalable system has three characteristics:

■ It can accommodate an increased usage
■ It can accommodate an increased dataset
■ It is maintainable

○ Example of a scalable system:
■ <?php sleep(1); echo "Hello world!"; ?>
■ Responds after one second: not fast at all, BUT:

■ Traffic growth is accommodated by adding
more web servers: no changes in code

■ Dataset growth is also accommodated: no
data stored

■ Code is very maintainable: easy to change
■ Note: coded using not the fastest language

Scaling & hardware

● Hardware is usually expensive at the beginning of
any project

○ This is changing now because of cloud computing
● But after project started, cost of software becomes

much more expensive
○ Up to a certain point, where, for huge applications,

hardware is an issue again
● Meaning that an application is better to be designed

and built in such a way to have little or no software
work to scale

● Scale by buying more hardware

Strategies for scaling

● Vertical scaling:
○ Get a more powerful version of the same hardware

to grow (and throw away the original)
● Horizontal scaling:

○ Get an exact duplicate of the current hardware to
grow

Vertical scaling

● Start with a basic setup - web server and database
server:

○ When each server runs out of capacity, replace it with more
powerful

○ When powerful one runs out of capacity, replace it with even
more powerful

○ Repeat :)
● Problem:

○ Reach the limit at some point - price grows exponentially
● But:

○ Really easy to design for vertical scaling - no changes in
software

○ Fast alternative If the ceiling for application's usage is known

Horizontal scaling
● Start with a basic setup - web server and database

server:
○ When each server runs out of capacity, add additional similar
○ When it also runs out of capacity, add additional
○ And so on

● When choosing hardware - consider maintenance costs
○ Rack and cable it, install OS, do basic setup, etc.; other

issues: space, power, cooling, etc.
● However, at time goes, dealing with hardware additions

and failures can become expensive - in other words,
increased administration costs:

○ But, systems administration doesn't scale in cost linearly
● Software performance may not scale linearly:

○ Since it needs to aggregate results from all nodes in a cluster,
swap message among all of its peers, etc.

○ At some point, it becomes too expensive to add more hardware

Redundancy
● Machines fail on a regular basis
● One out of every 10,000 machines is expected to die

each day
● Have to be prepared to failure of any component
● Spare 'pieces' may be cold, warm and hot:

○ Cold spare: e.g., network switch (physical/software setup
and configuration)

○ Warm spare: e.g., queries redirected to a slave database
server when a master server dies (configured but needs
to be flipped on physically or in software)

○ Hot spare: automatic substitute; e.g., two load balancers
are active/passive pair, active takes all traffic and notifies
backup balancer via monitoring messages, if active fails,
passive stops getting messages and takes over

Scaling network
● As a rule, not a big problem
● Regular networking technologies like gigabit Ethernet

provide so much bandwidth that web applications most
likely never touch the limits

● Sometimes, an application produces a constant stream
of noncritical data and occasional bursts of very
important data:

○ May be a problem since Ethernet makes no QoS
guarantees

○ Split network into distinct subnets
○ Switches support creation of virtual LANs

● When lots of data has to be transferred between two
hosts, high-speed data communication can be used: e.
g., InfiniBand (data exchange of up to 100 Gb)

Load balancing

● Vertical scaling: spreading load is the job of operating
system scheduler

● Horizontal scaling: there are multiple processors, but
no operating system to spread requests between
them

○ Several solutions grouped under the term "load
balancing"

● DNS-load balancing (dns-issues, hard removal)
● Load balancing with hardware (expensive)
● Load balancing with software

Scaling database

This figure and figures on slides 13-32 have been copied from
'Building scalable web sites', O'Reilly, 978-0596102357, 2006.

Scaling database
● Web applications typically need a lot more read capacity

than write: somewhere between 10 and 100 reads for one
write

● Master-Slave replication:

Scaling database
● More read capacity with additional slaves (100 slaves per

master in some large applications)
● Slaves aren't guaranteed to be in sync with each other
● Reading scales pretty well, writing is not

Scaling database
● With lots of slaves, bandwidth required by the master to

replicate to all slaves is substantial
● Tree replication

Scaling database
● Master-master replication (each is slave of other)
● Tables with autoincrement primary IDs are problematic

Scaling database
● Masters ring
● At any time, no “true” copy of data
● Failure in a single machine will cause all machines to

become stale

Scaling database

● To allow database to scale writes as well as
reads, use database partitioning (chop it up into
chunks)

● Two ways:
○ Clustering (vertical)
○ Federation (horizontal)

Scaling database
● Clustering:

○ Each cluster contains a subset of tables (joined tables
go together)

● Can split only until a single table or a set of joined
tables

● Management of cluster is more difficult (different
machines have different data)

Scaling database

● Federation:
○ Slice the data in the table up into arbitrarily sized

chunks
○ Chunks of data and the machines that power

them are usually referred to as shards or cells
○ Avoid cross-shard selects and joins

● The key to avoiding cross-shard queries –
federate in such as way that all the records you
need to fetch together reside on the same shard

● Note: horizontal partitioning in MySQL (5.1 and higher):
see http://dev.mysql.com/doc/refman/5.1/en/partitioning.html

http://dev.mysql.com/doc/refman/5.1/en/partitioning.html

Scaling database

● Federation logic as a separate layer:

Scaling in brief
● When designing a system to be scalable:

○ Design components that can scale linearly by adding more
hardware

○ If you can't scale linearly, figure out the return for each
piece of hardware added

○ Load balance requests between clusters of components
○ Take into account redundancy
○ Design your components to be fault-tolerant and easy to

recover
○ Federate large datasets into fixed-size chunks

● Your application can only scale as well as the worst
component in it:

○ Identifying bottlenecks is a must
○ Monitoring infrastructure required

Monitoring

● In a system consisting of many components
something always happens

● Do long-term and extensive monitoring:
○ To understand trends and plan for capacity

● Collect and analyze web logs
● Use beacons (a tiny, (usually) invisible image

added to the pages of your application for
statistical tracking)

● Stream each logfile to a central location

Application monitoring

● Bandwidth monitoring
● Database statistics
● Server runtime statistics (mod_status for

Apache)
● Cache statistics

Alerting

● If something crashes or near to crash, you
need to know immediately

● That is, there should be a tool that monitors
key statistics and alerts whenever some
parameter goes below or above a certain
value

● Uptime checks (to check that a service or
component is up)

● Threshold checks
● Low-watermark checks

Identifying bottlenecks

● As Donald Knuth said: premature
optimization is the root of all evil (or at least
most of it) in programming

● Optimizing any part of your application before
finding out whether that component requires
optimization is a waste of time

Database throughput

● In many web applications, the biggest bottleneck is
database throughput, usually caused by disk I/O

● When a database being a bottleneck, it is generally
about the time between a query reaching the
database server and its response being sent out

● Certain kinds of data are good for caching:
○ Get set very infrequently but fetched very often
○ E.g., account data: you might want to load

account data for every page that you display, but
you might only edit account data during 1 in
every 100 requests

Adding caching

● When fetching an object, we first check in the
cache

○ If object exists, read it from the cache and return it
to the requesting process

○ If it doesn't exist in cache, we read the object from
the database, store it in cache, and return it to the
requester

● When changing an object in the database, either
for an update or a delete, it needs to be
invalidated in cache

Adding caching

Caching: memcached

● memcached: memory cache demon
● Open source memory-caching system designed

to be used in web applications to remove load
from database servers

● Supports up to 2 GB of cache per instance
○ But allows you to run multiple instances per

machine and spread instances across multiple
machines

● Native APIs available for PHP, Perl and other
common languages

Caching as entire level
● Problems:

○ Reads are caching, while all writes need to be written to
database synchronously and cache either purged or
updated

○ Cache-purging and updating logic gets tied into our
application and adds complexity

● Cache as layer of its own:

Example: eBay architecture (1995-2006)
● See http://highscalability.com/blog/2008/5/27/ebay-

architecture.html (figures taken from the eBay architecture talk, http:
//www.addsimplicity.com/downloads/eBaySDForum2006-11-29.pdf)

● 2006 eBay figures:
○ Over 200mln registered users
○ Over one billion photos
○ Over two petabytes of data
○ Over 26 billions executions per day

Example: eBay architecture
● 1995-97 (v1; every item was a separate file generated by

perl script):
○

● 1997-99 (v2; C++, MS, Oracle):

Example: eBay architecture
● 1999 (v2.1; server grouped into pools, front-end balancing

and failover, db scaled vertically to a larger machine):

● 1999-2001 (v2.3-2.4; horizontal scaling of servers continued,
second db for failover, db 'splitting' started):

Example: eBay architecture

● Observation:
○ Change of technology stack all the time

■ 2002: moved from C++ to Java
■ Later: Oracle->MySQL (sharding)

● Scaling data tier
○ Segmentation by function

■ User hosts, item hosts, account hosts, feedback
hosts, ...

■ More that 70 other
○ Horizontal splits within function
○ Introducing logical database hosts (additional layer)

CAP Theorem

○ At PODC'00 (in an invited talk "Towards
Robust Distributed Systems"), Brewer made
the conjecture:

■ It is impossible for a web service to provide
the following three guarantees:

■ Consistency
■ Availability
■ Partition-tolerance

■ All three are expected and very desirable
from real-life web services

○ In 2002, Gilbert and Lynch of MIT formally
proved the Brewer's conjecture

■ Prove is rather simple

CAP Theorem
○ Consistency (all nodes see the same data)

■ Formally, atomic consistency
■ Requests to a distributed shared memory are executed

like they are executing on a single node (i.e., one by
one)

■ Property: read operation that begins after write
operation completes must return the value/result of this
write operation

○ Availability (node failures do not prevent others to
operate)

■ Every request received by non-failing node must result
in a response (or every request must terminate)

○ Partition-tolerance (loss of some messages doesn't
disrupt the system operation)

■ A network is partitioned if all messages sent from nodes
in one component of the partition to nodes of other
partition are lost

CAP Theorem

○ No Consistency
■ web caching, DNS, NoSQL dbs

○ No Availability
■ distributed databases, majority protocols

○ No partition-tolerance
■ single-site databases, LDAP

Cloud computing

● Servers are not used all the time:
○ Need to have them for redundancy
○ Idle time is cost-inefficient

● Computational power of 1000 servers for one
hour costs the same as using power of one
server for 1000 hours:

○ Cloud computing services such as Amazon Elastic
Compute Cloud made the first option (1000
servers for 1 hour) available

○ One can start with one virtual instance, add more
almost instantly when needed (if, of course,
application was designed correspondingly)

Literature
● Books&articles:

○ Building scalable web sites, O'Reilly, 2006
○ Developing large web applications, O'Reilly, 2010
○ The art of capacity planning, O'Reilly, 2008
○ Performance by design: Computer capacity

planning by example, Prentice Hall, 2004
○ Thinking clearly about performance by Millsap, ACM

Queue, 2010
○ On designing and deploying Internet-scale services

by Hamilton, LISA'07, 2007
● http://highscalability.com/

○ Examples of scaling real web sites
● http://perspectives.mvdirona.com/
● http://en.wikipedia.org/wiki/Scalability
● http://en.wikipedia.org/wiki/CAP_theorem

